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Abstract
We present ByteSTM, a virtual machine-level Java STM im-
plementation. ByteSTM implements two STM algorithms,
TL2 and RingSTM, and transparently supports implicit
transactions. Program bytecode is automatically modified
to support transactions. Being implemented at the VM-
level, it accesses memory directly and uses absolute mem-
ory addresses to uniformly handle memory, and avoids Java
garbage collection by manually managing memory for trans-
actional metadata. ByteSTM uses field-based granularity.
Our experimental studies reveal throughput improvement
over other Java STMs in the range of 13%–70% on micro-
benchmarks and 10%–60% on macro-benchmarks.

Categories and Subject Descriptors D.1.3 [Programming
Techniques]: Concurrent Programming–parallel program-
ming; D.3.3 [Programming Languages]: Language Con-
structs and Features–concurrent programming structures;
D.3.4 [Programming Languages]: Processors–run-time en-
vironments

General Terms Algorithms, Experimentation, Languages.

Keywords software transactional memory (STM), transac-
tions, concurrency, atomicity, run-time, virtual machines

1. Introduction
Lock-based synchronization is the most widely used syn-
chronization abstraction. Coarse-grained locking is simple
to use, but limits concurrency. Fine-grained locking permits
greater concurrency, but has low programmability: program-
mers must acquire only necessary and sufficient locks to ob-
tain maximum concurrency without compromising safety,
and must avoid deadlocks when acquiring multiple locks.
Moreover, locks can lead to livelocks, lock-convoying, and
priority inversion. Perhaps, the most significant limitation of
lock-based code is its non-composability [20].

Transactional Memory (TM) is an alternative synchro-
nization abstraction that promises to alleviate these difficul-
ties. With TM, code that read/write shared memory objects is
organized as memory transactions, which speculatively exe-
cute, while logging changes made to objects–e.g., using an

undo-log or a write-buffer. Two transactions conflict if they
access the same object and one access is a write. A con-
tention manager resolves the conflict by aborting one and al-
lowing the other to commit, yielding (the illusion of) atom-
icity. Aborted transactions are re-started, after rolling-back
the changes–e.g., undoing object changes using the undo-log
(eager), or discarding the write buffer (lazy). In addition to
a simple programming model (locks are excluded from the
programming interface), TM provides performance compa-
rable to lock-based synchronization [37] and is composable.

TM has been proposed in hardware (HTM [19]), in soft-
ware (STM [38]), and in combination (HybridTM [26]).
HTM has the lowest overhead, but transactions are limited
in space and time. STM does not have such limitations, but
has higher overhead. HybridTM avoids these limitations.

Thread A

1 a to mi c {
2 f o r ( i n t i =0 ; i <1000;

i ++)
3 c o u n t e r ++;
4 }

Thread B

1 a to mi c{
2 f o r ( i n t i =0 ; i <1000;

i ++)
3 c o u n t e r ++;
4 }

Figure 1. Example of implicit transaction language support.
If counter is initialized to zero, the final value will be 2000.

Figure 1 shows an example TM code. The example uses
the atomic keyword, which implicitly creates a transaction
for the enclosed code block.

1.1 STM Implementations
Given the hardware-independence of STM, which is a com-
pelling advantage, we focus on STM. STM implementa-
tions can be classified into three categories: library-based,
compiler-based, and virtual machine-based. Library-based
STMs add transactional support without changing the un-
derlying language, and can be further classified into: those
that use explicit transactions [16, 21, 33, 44] and those that
use implicit transactions [10, 25, 36]. Explicit transactions
are difficult to use. They support only transactional objects,
and hence cannot work with external libraries. Implicit trans-
actions, on the other hand, use modern language features
(e.g., Java annotations [40]) to mark sections of the code
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Implicit transactions " " $ " $ $ " " " " "

No instrumentation $ $ " " " " $ " " $ "

All data types " $ $ " $ $ $ " " " "

External libraries " $ $ "1 $ $ $ " $2 " "

Unrestricted atomic blocks $ $ " " " " $ " " " "

Direct memory access " 3 $ $ $ $ $ $ " " $ "

Field-based granularity " $ $ $ $ $ $ $ $ $ "

No GC overhead "4 $ $ $ $ $ $ " " $ "

Compiler support $ $ $ " $ $ $ " " " " &$ 5

Strong atomicity $ $ " " $ $ $ $ " $ $

Closed/Open nesting $ " " $ $ $ $ $ " $ $

Conditional variables $ $ $ $ $ $ $ $ " $ $

1 Only if source code is available.
2 It is a new language, thus no Java code is supported.
3 Using non-standard library.
4 Uses object pooling, which partially solves the problem.
5 ByteSTM can work with or without compiler support.

Table 1. Comparison of Java STM implementations.

as atomic. Instrumentation is used to add transactional code
transparently to the atomic sections. Some implicit transac-
tions work only with transactional objects [10, 36], while
others work on any object and support external libraries [25].

Compiler-based STMs (e.g., Intel C++ STM compiler [14],
AtomJava [22]) support implicit transactions transparently
by adding new language constructs (e.g., atomic). The com-
piler then generates transactional code that calls the under-
lying STM library. Compiler-based STMs can optimize the
generated code and do overall program optimization. On the
other hand, compilers need the source code to support exter-
nal libraries. With managed run-time languages, compilers
alone do not have full control over the VM. Thus, the gen-
erated code will not be optimized and may contradict with
some of the VM features like the garbage collector (GC).

VM-based STMs, which have been less studied, in-
clude [2, 12, 18, 45]. In [18], STM is implemented in C
inside the JVM to get benefits of the VM-managed environ-
ment. This STM uses an algorithm that does not support the
opacity correctness property [17]. This means that inconsis-
tent reads may occur before a transaction is aborted, causing
unrecoverable errors in an unmanaged environment. [12]
presents a new programming language based on Java, called
Atomos, and a VM to run it. Standard Java synchronization
(i.e., synchronized, wait/notify) is replaced with trans-
actions. However, transactional support is based on HTM.

Library-based STMs are largely based on the premise that
it is better not to modify the VM or the compiler, to pro-

mote flexibility, backward compatibility with legacy code,
and easiness to deploy and use. However, this premise is in-
creasingly violated as many require some VM support or are
being directly integrated into the language and thus the VM.
Most STM libraries are based on annotations and instrumen-
tation, which are new features in the Java language. For ex-
ample, Deuce STM library [25] is based on a non-standard
proprietary API (i.e., sun.misc.Unsafe), which makes it
incompatible with other JVMs. Moreover, programming lan-
guages routinely add new features in their evolution for a
whole host of reasons. Thus, as STM gains traction, it is nat-
ural that it will be integrated into the language and the VM.

Implementing STM at the VM-level allows many oppor-
tunities for optimization and adding new features. For exam-
ple, the VM has direct access to memory. Thus, writing val-
ues back to memory is easier, faster, and can be done with-
out using reflection (which usually degrades performance).
The VM also has full control of the GC, which means that,
the GC’s potentially degrading effect on STM performance
can be controlled or even eliminated by manually allocating
and recycling the memory needed for transactional support.
Moreover, if TM is supported using HTM (as in [12]), then
VM is the only appropriate level of abstraction (from a per-
formance standpoint) to exploit that support. Otherwise, if
TM is supported at a higher level, the GC will abort trans-
actions when it interrupts them, and language synchroniza-
tion semantics will contradict with transactional semantics.
Also, VM memory systems typically use a centralized data



structure, which increases the number of conflicts, degrading
performance [9].

1.2 Contributions
Motivated by these observations, we design and implement
a VM-level STM: ByteSTM (Section 2). ByteSTM imple-
ments two algorithms: TL2 [15] and RingSTM [39]. It writes
directly to memory without using reflection (unlike [21]) or a
non-standard library (unlike [25]). ByteSTM uniformly han-
dles all variable types, using the address and number of bytes
as an abstraction. It eliminates the GC overhead, by manu-
ally allocating and recycling memory for transactional meta-
data. ByteSTM uses field-based granularity, which scales
better than object-based or word-based granularity, and has
no false conflicts due to field granularity.1

ByteSTM supports implicit transactions in two modes:
compiler mode and direct mode. The compiler mode re-
quires compiler support and works with the atomic new
keyword. The direct mode works with standard Java com-
pilers by calling (special) static methods to start and end a
transaction. A transaction can surround any block of code,
and is not restricted to methods only. Memory bytecode
instructions (i.e., memory load/store operations) that are
reachable from a transaction are translated so that the re-
sulting native code executes transactionally. Thus, no instru-
mentation is required. ByteSTM works with all data types,
not just transactional objects, and thereby supports exter-
nal libraries. Our current implementation does not support
nesting, strong atomicity, or conditional variables; these are
planned as future work.

Table 1 distinguishes ByteSTM from other STM imple-
mentations. Each row describes an STM feature, and each
column describes an STM implementation. The table entries
describe the features supported by the different STMs. (Sec-
tion 4 summarizes competitor STMs.)

We conducted experimental studies, comparing ByteSTM
with other Java STMs including Deuce [25], Object Fab-
ric [33], Multiverse [44], DSTM2 [21], and JVSTM [10]
(Section 3). Our results reveal that, ByteSTM improves
transactional throughput over others by 13% to 70% on
micro-benchmarks, and by 10% to 60% on macro-benchmarks.
The overall average improvement is 30%.

ByteSTM is open-sourced and is publicly available at
hydravm.org/bytestm. We hope this encourages replica-
tion of our results and further research in this problem space.

2. Design and Implementation
ByteSTM is built by modifying the JikesRVM [4] ver-
sion 3.1.0. In ByteSTM, bytecode instructions can run in
two modes: transactional and non-transactional. The vis-
ible modifications to the VM users are very limited: two
new instructions are added (xBegin and xCommit) to the

1 False conflicts may still occur due to other implementation choices, e.g.,
TL2 lock table [15], read/write signatures [39].

VM bytecode instructions. These two instructions will need
compiler modifications to generate the correct bytecode
when the atomic blocks are translated. Also, the compiler
should handle the new keyword atomic correctly. How-
ever, in order to eliminate the need for a modified com-
piler, a simpler workaround is used, which is calling the
static method stm.STM.xBegin() to begin a transaction,
and stm.STM.xCommit() to commit the transaction. These
two methods are defined empty and static in the class STM in
stm package.

ByteSTM is implicitly transactional: the program only
specifies the start and the end of the transaction and all mem-
ory operations (loads and stores) inside these boundaries
are implicitly transactional. This simplifies the code inside
the atomic block and also eliminates the need for making a
transactional version for each memory load/store instruction,
thereby keeping the number of added instructions minimal.
When xBegin is executed, the thread enters in transactional
mode. In this mode, all writes are isolated and the execution
of the instructions is speculative until xCommit is executed.
At that point, the transaction is compared against other con-
current transactions for a conflict. If there is no conflict, the
transaction is allowed to commit and at this point (only), all
the transaction modifications become visible to the outside
world. If the commit fails, all the transaction modifications
are discarded and the transaction restarts from the beginning.

In the current implementation of ByteSTM, we use the
Jikes Baseline Compiler [42], which does not support many
optimizations (e.g., inlining, local optimization, control op-
timization, global optimization). This compiler is simply
used to translate from bytecode instructions to native code,
one by one. For each memory load/store instruction, native
code is generated, which checks whether the thread is run-
ning in transactional mode or non-transactional mode. Thus,
the instruction execution continues transactionally or non-
transactionally. (Our immediate future work includes replac-
ing the Jikes Baseline Compiler with the Jikes Optimizing
Compiler [43].)

Modern STMs [10, 25, 36] use automatic instrumenta-
tion. Java annotations are used to mark methods as atomic.
The instrumentation engine then handles all code inside
atomic methods and modifies them to run as a transaction.
This conversion does not need the source code and can be
done offline or online. Instrumentation allows, for the first
time, using external libraries – i.e., code inside a transac-
tion can call methods from an external library, which may
modify program data [25].

No instrumentation is required in ByteSTM. This means
lesser overhead than online instrumentation. Any code that
is reachable from within a transaction is compiled to na-
tive code with transactional support. Classes/packages that
will be accessed transactionally are input to the VM by
specifying them on the command line. Then, each mem-
ory operation in these classes is translated so that it first



checks if the thread is running in transactional mode. If so, it
runs transactionally. Otherwise, it runs regularly (i.e., non-
transactionally). Although doing such a check with every
memory load/store operation increases overhead, our results
show significant throughput improvement over competitor
STMs (see Section 3).

Atomic blocks can be used anywhere in the code (ei-
ther using the atomic keyword or by calling xBegin and
xCommit). It is not necessary to make a whole method
atomic; any block can be atomic. External libraries can be
used inside transactions without any change.

Memory access is monitored at the field level, and not
at the object level. Field-based granularity scales well and
eliminates false conflicts resulting from two transactions
changing different fields of the same object.

2.1 Metadata
Working at the VM level allows changing the thread header
without modifying the program code. For each thread that
executes transactions, metadata added include the read sig-
nature, the write signature, the write buffer, and the start
time. These metadata is added to the thread header and is
used by all transactions executed in the thread. Figure 2
shows a thread header example with added metadata. Since
each thread executes one transaction at a time, there is no
need to create new data for each transaction, allowing reuse
of the metadata. Also, accessing a thread’s header is faster
than Java’s ThreadLocal abstraction.

Thread Header

In Transactional mode?

STM algorithm specific data

Read Signature Write Signature

Write Buffer Start Time

Figure 2. A thread header example with added metadata.

2.2 Memory Model
At the VM-level, the memory address of each field of an ob-
ject can be easily obtained. As mentioned before, ByteSTM
is not object-based, it is field-based. The address of each
field is used to track memory reads and writes. A conflict
occurs only if two transactions modified the same field of an
object. Static objects are also supported.

In Java, arrays are objects. ByteSTM tracks memory ac-
cesses to arrays at the element level. That way, unnecessary

aborts are eliminated. Moreover, no reflection is needed and
data is written directly to the memory, as a memory address
is already available at each load and store.

Absolute memory address is used to unify different ad-
dressing mechanisms used in Java. An object instance’s
field’s absolute address equals the object’s base address plus
the field’s offset. A static object’s field’s absolute address
equals the global static memory space’s address plus the
field’s offset. Finally, an array’s element’s absolute address
equals the array’s address plus the element’s index in the
array (multiplied by the element’s size).

To optimize memory access, memory access is handled
in the raw format. This means that the address of a memory
location and the number of bytes at that address are all the
information needed to access that location, irrespective of
the data type of the location. This abstract view simplifies
how the read-set and the write-set are handled. At a memory
load, all information needed to track the read is the memory
address of the read location. At memory store, the memory
address, the new value, and the size of the value are the
information used to track the write. When data is written
back to memory, the write-set information (address, value,
and length of the location) is used to store the committed
values correctly. This abstraction also simplifies the code,
as there is now no need to differentiate between different
data types, as they are all handled as a sequence of bytes
in the memory. The result is simplified code that handles
all the data types, and smaller number of branches (no type
checking), yielding faster execution.

2.3 Write-set Representation
We found that using a complex data structure to represent
read-sets and write-sets affects performance. Given the sim-
plified raw memory abstraction used in ByteSTM, we de-
cided to use simple arrays of primitive data types. This de-
cision is based on two reasons. First, array access is very
fast and has access locality, resulting in better cache usage.
Second, with primitive data types, there is no need to al-
locate a new object for each element in the read/write set.
(Recall that an array of objects is allocated as an array of
references in Java, and each object needs to be allocated sep-
arately. Hence, there is a large overhead for allocating mem-
ory for each array element.) Even if object pooling is used,
the memory will not be contiguous since each object is allo-
cated independently in the heap.

Using arrays to represent the write-set means that the cost
of searching an n-element write-set is O(n). For n ≤ 10
(which is the case in micro-benchmarks [24]), this is accept-
able, and was found to be faster than using hashing, given the
overhead of the standard Java hash table (which uses linked-
lists for bucket overflows and supports only objects).

To obtain the benefits of arrays and the speed of hash-
ing, open-addressing hashing with linear probing is used. We
used an array of size 2n, which simplifies the modulus cal-
culation.



The hash function that we used is simple, which simply
removes the upper bits from the memory address using bit-
wise and operation (which is equivalent to calculating the
modulus of the address): address AND mask = address MOD
arraySize, where mask = arraySize - 1. For example, if ar-
raySize = 256, then hash(address) = address AND 0xFF.
This hashing function is very efficient with addresses, as the
collision ratio is very small. When a collision happens, there
is always an empty cell after the required index because of
the memory alignment gap (so linear probing will give good
results). This way, we have a very fast and efficient hash-
ing function that adds very little overhead to each array ac-
cess, enabling O(1)-time searching and adding operations
on large write-sets.

Iterating over the write-set elements by cycling through
the sparse array elements is not efficient. We solve this by
keeping a contiguous log of all the used indices, and then
iterating on the small contiguous log entries.

Address Value Size

Figure 3. ByteSTM’s write-set using open address hashing.

Open addressing has two drawbacks: memory over-
head and rehashing. These drawbacks can be controlled
by choosing the array size such that the number of rehash-
ing is reduced, while minimizing memory usage. Figure 3
shows how ByteSTM’s write-set is represented using open-
addressing.

2.4 Atomic Blocks
ByteSTM supports atomic blocks anywhere in the code.
When xBegin is executed, the current program state is
saved. If a transaction is aborted, the saved state is restored
and the transaction can restart as if nothing has changed in
local variables – i.e., similar to setjmp/longjmp in C. This
technique simplifies the handling of local variables since
there is no need to monitor them. Note that, at the VM level,
full control of the program state is possible.

2.5 Garbage Collector
One major drawback of building an STM for Java (or any
managed language) is the GC [29]. STM uses metadata to
keep track of transactional reads and writes. This requires al-
locating memory for the metadata and then releasing it when
not needed. Frequent memory allocation (and implicit deal-

location) forces the GC to run more frequently to release un-
used memory, increasing the overhead on STM operations.

Some STMs have tried to solve this problem by reducing
memory allocation and recycling the allocated memory [25].
For example, object pooling is used to reduce the pressure
on the memory system and improve performance in [25],
wherein objects are allocated from, and recycled back to
a pool of objects (with the heap used when the pool is
exhausted). However, allocation is still done through the
Java memory system, and the GC will continue to check if
the pooled objects are still referenced.

Since ByteSTM is integrated into the VM, its memory al-
location and recycling is done outside the control of the Java
memory system: memory is directly allocated and recycled.
STM’s memory requirement, in general, has a specific life-
time. When a transaction starts, it requires a specific amount
of metadata, which remain active for the transaction’s du-
ration. When the transaction commits, the metadata is recy-
cled. Thus, manual memory management does not increase
the complexity or overhead of the implementation.

The GC causes another problem for ByteSTM, however.
ByteSTM stores intermediate changes in a write buffer.
Thus, the program’s newly allocated objects will not be
stored in the program’s variable. The GC scans only the pro-
gram’s stack to find objects that are no longer referenced.
Hence, it will not find any reference to the newly allocated
objects and will recycle their memory. When ByteSTM com-
mits a transaction, it will thus be writing a dangling pointer.
We solve this problem by giving the GC a list of all interme-
diate objects in a transaction’s write buffer, so that the GC
will not “touch” them.

2.6 STM Algorithms
As mentioned before, ByteSTM implements two STM al-
gorithms: TL2 [15] and RingSTM [39]. Our rationale for
selecting these two algorithms is that, they are the best per-
forming algorithms reported in the literature. Additionally,
they cover different points in the tradeoff space: TL2 is ef-
fective for long transactions, moderate number of reads, and
scales well with large number of writes, while RingSTM
is effective for transactions with high number of reads and
small number of writes. We briefly overview these algo-
rithms for completeness.

With TL2, a global lock table consisting of versioned
locks is used to synchronize access to shared locations. A
global clock is also used to tag each transaction with its start-
ing time (version). A transaction’s writes are buffered in a
redo log. Each transaction has a read-set. A transaction val-
idates its read-set by checking the corresponding lock in the
lock table. If the lock is acquired, or if it has a larger version
than the transaction’s version, then the transaction aborts. At
commit, a validation is done again for all read-set entries.
If the transaction is valid, then the current transaction’s redo
log entries are locked. If all locks are acquired successfully,
then the transaction writes-back the redo log values to mem-



ory, increments the global clock, and finally updates the ac-
quired locks’ versions with the new clock value and releases
the locks.

With RingSTM, a transaction’s writes are buffered in a
redo log. Each transaction has a read signature and a write
signature (i.e., Bloom filter [8]) that summarize all read lo-
cations and written locations, respectively. A transaction val-
idates its read-set by intersecting its read signature with
other concurrent committed transactions’ write signatures
in a ring. The ring is a circular buffer that has all commit-
ted transactions’ write signatures. At commit, a validation is
done again. If the transaction is valid, then the current trans-
action’s write signature is added to the ring using a single
Compare-And-Swap operation. If it is successfully added to
the ring, then the transaction is committed, and it writes-back
the redo log values to memory.

2.7 Limitations
Currently, ByteSTM does not support running irrevocable
operations (e.g., I/O operations) inside a transaction. One
way to support such operations is to automatically convert
a transaction to an irrevocable one when it performs any
irrevocable action. Irrevocable transactions are guaranteed
to commit successfully by executing them non-concurrently,
of course, at the expense of reduced throughput. (Note that
none of the Java STMs in Table 1 support irrevocable trans-
actions.)

ByteSTM does not support nesting. But the mechanism
of storing transaction’s metadata in the thread header can
be easily extended to support linear nesting (i.e., all child
transactions run in the same thread of the parent) [30]. For
example, the thread header can hold a tree representing par-
ent/child relationship, and each node may hold transaction
metadata. Each transaction can then access its metadata and
its parent’s metadata directly from the thread header. For
parallel nesting (i.e., each child transaction runs in its own
thread) [3, 6], a global data structure, where a child can find
its parent’s metadata, can be added.

Currently, ByteSTM works only with non-moving GC
(e.g., mark-and-sweep [27]), where the object address does
not change. One way to support moving GC [23] is to use
two fields to represent a field address: the field’s object’s ad-
dress and the field’s offset. The GC would have access to all
transactions’ read/write sets. At the end of its garbage col-
lection cycle, the GC scans all object addresses and updates
them the same way it updates regular object references (e.g.,
using forwarding pointers). The same technique can be used
for array elements, but the field’s offset will hold the element
index multiplied by the element size.

Adding support for irrevocable operations, nesting, and
moving GC is future work.

3. Experimental Results
3.1 Test Environment
We conducted our experiments on a 48-core machine, which
has four AMD OpteronTMProcessors (6164 HE), each with
12 cores running at 1700 MHz, and 16 GB of memory.
The machine runs Ubuntu Linux Server 10.04 LTS 64-
bit. JikesRVM version 3.1.0 is used to run all experiments.
We configured it to run using the Jikes Baseline compiler
and mark-and-sweep GC, which match ByteSTM configu-
rations.

The competitor STMs include Deuce [25], ObjectFab-
ric [33], Multiverse [44], DSTM2 [21], and JVSTM [10].
(See Section 4 for a discussion on these STMs.) Note that
Deuce uses a non-standard proprietary API (i.e., sun.misc.
Unsafe), which is not fully supported by JikesRVM. To run
Deuce atop JikesRVM, we therefore added necessary meth-
ods to JikesRVM sun.misc.Unsafe implementation in-
cluding getInt, putInt, getByte, putByte, getDouble,
putDouble, etc.

Since some of these competitor STMs use different al-
gorithms (e.g., Multiverse uses a modified version of TL2;
JVSTM uses a multi-version STM algorithm) or different
implementations, a direct comparison between them and
ByteSTM has some degree of unfairness. This is because,
such a comparison includes many combined factors – e.g.,
the TL2 implementation in ByteSTM is similar to Deuce’s
TL2 implementation, but the write-set and memory manage-
ment are different. This makes it difficult, in general, to con-
clude that ByteSTM’s (potential) performance gain is exclu-
sively due to implementing STM at the VM-level. Thus, we
implemented a non-VM version using TL2 and RingSTM al-
gorithms as Deuce plug-ins. Comparing between ByteSTM
as an STM at the VM level with such a non-VM implemen-
tation reduces the number of factors in the comparison.

The non-VM implementation was made as close as possi-
ble to the VM one. The same open-addressing hashing write
set is used. The absolute address is replaced by the field’s
object’s reference and the field’s offset. A large read-set and
write-set are used so that they are sufficient for the experi-
ment without requiring extra space. These sets are recycled
for the next transactions. This way, only a single memory
allocation is needed and the GC overhead is minimal. We
used Deuce for this non-VM implementation, since it has
many of ByteSTM’s features. For example, it can directly
access memory and uses field-based granularity. Moreover,
it achieved the best performance among all STM competitors
(see results later in this section). We used offline instrumen-
tation to eliminate the online instrumentation overhead.

Our test applications include both micro-benchmarks and
macro-benchmarks. The micro-benchmarks are data struc-
tures including Linked List, Skip List, Red-black Tree, and
Hash set. The macro-benchmarks include five applications
from the STAMP benchmark suite [11] (Vacation, KMeans,
Genome, Labyrinth, and Intruder) and a Bank application.



For the micro-benchmarks and the bank application, we
measured the transactional throughput (i.e., the number of
transactions committed per second). Thus, higher is better.
For the STAMP macro-benchmarks, we measured the core
program execution time, which includes transactional exe-
cution time. Thus, smaller is better.

Each experiment was repeated 10 times, and each time,
the VM was “warmed up” (i.e., we let the VM run the
experiment for some time without logging the results) before
taking the measurements. We show the average and the 90%
confidence interval for each data point.

3.2 Micro-Benchmarks
We converted the micro-benchmark data structures from us-
ing course-grain locking to use transactions. The transac-
tions contain all the code that was inside the critical sections
in the course-grain locking version.

Each data structure is a representation of a sorted set of
integers of size 256. The set elements are in the range 0
to 65536. Writes represent add and remove operations, and
they keep the size of the set approximately constant during
the experiment. Different ratios of writes and reads were
used to measure the performance under different levels of
contention. We also varied the number of threads in expo-
nential steps (i.e., 2, 4, 8, ...), up to 48.

For each benchmark, we conducted experiments with dif-
ferent read/write ratios: 20% writes, 50% writes, 80% writes,
and 100% writes.

3.2.1 Linked List
Linked-list operations are characterized by a high number of
reads (the range is from 70 at low contention to 270 at high
contention), due to traversing the list from the head to the re-
quired node, and a few writes (about 2 only). This results in
long transactions. Moreover, we observed that transactions
suffer from a high number of aborts (abort ratio is from 45%
to 420%), since each transaction keeps all visited nodes in
its read-set, and any modification to these nodes by another
transaction’s add or remove will abort the transaction.

Figure 4 shows the throughput at increasing number of
threads. ByteSTM has two curves representing the RingSTM
and TL2 algorithms.

We observe that, in all cases, ByteSTM/RingSTM achieves
the best performance and scalability. This is followed by
ByteSTM/TL2. Deuce’s performance degrades quickly as
the number of threads is increased due to its write-set imple-
mentation. Other STMs perform in a similar way, and all of
them have a very low throughput. DSTM2 has a very poor
performance (not surprisingly, as it is a first generation STM
implementation).

At high contention, TL2’s scalability degrades. RingSTM
continues to scale well up to 100% write ratio. ByteST-
M/TL2 outperforms non-VM/TL2 by as much as 15%
and up to 18%. ByteSTM/RingSTM outperforms non-VM/
RingSTM in the 65%–71% range. The large gap between
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(a) 20% writes.

 0

 50

 100

 150

 200

 250

 300

 2  4  8  16  32  64

T
h

ro
u

g
h

p
u

t 
(t

ra
n

s
a

c
ti
o

n
/s

e
c
)

Number of threads

ByteSTM/RingSTM
Non-VM/RingSTM

ByteSTM/TL2
Non-VM/TL2

Deuce/TL2
Object Fabric

Multiverse
DSTM2
JVSTM

(b) 50% writes.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 2  4  8  16  32  64

T
h

ro
u

g
h

p
u

t 
(t

ra
n

s
a

c
ti
o

n
/s

e
c
)

Number of threads

ByteSTM/RingSTM
Non-VM/RingSTM

ByteSTM/TL2
Non-VM/TL2

Deuce/TL2
Object Fabric

Multiverse
DSTM2
JVSTM

(c) 80% writes.
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Figure 4. Throughput under Linked List.



TL2 and RingSTM is due to the elimination of the read-set
and usage of signatures in RingSTM, given the very small
number of writes.

Note that the throughput range that we observe is lower
than the throughput range reported for Java (non-VM) STM
implementations such as LSA-STM and Deuce in [25, 35].
This discrepancy is directly due to our usage of the Jikes
Baseline compiler and mark-and-sweep GC, which results
in a slow VM. The difference in the throughput range is
orthogonal to our point: ByteSTM’s throughput is better
than the others. With the Jikes Optimizing compiler and a
high performance GC, we expect the throughput range to be
consistent with, or better than those in [25, 35].

3.2.2 Skip List
Skip List operations are characterized by a medium number
of reads (from 20 to 40), and a small number of writes
(from 2 to 8). This results in medium-length transactions.
Moreover, transactions suffer from a low number of aborts
(abort ratio is from 4% to 20%).

Figure 5 shows the results. In all cases, ByteSTM/TL2
achieves the best scalability. ByteSTM/RingSTM’s scalabil-
ity is affected by the higher abort ratio due to Bloom filter’s
false positives. Among other STMs, Deuce/TL2 is the best in
performance and scalability up to 16 threads. Other STMs’
performance and scalability are poor. DSTM2 shows very
poor performance.

ByteSTM/TL2 outperforms non-VM/TL2 in the 13–15%
range. ByteSTM/RingSTM outperforms non-VM/RingSTM
in the 11–16% range.

Since Deuce/TL2 achieved the best performance among
all other STMs, for all further experiments, we use Deuce as
a fair competitor against ByteSTM to avoid clutter, along
with the non-VM implementations of TL2 and RingSTM
algorithms.

3.2.3 Red-Black Tree
Red-Black Tree operations are characterized by a small
number of reads (from 15 to 30), and a small number of
writes (from 2 to 9). This results in short transactions. More-
over, transactions suffer from a low number of aborts (abort
ratio is from 4% to 30%).

Figure 6 shows the results. We observe that, in all cases,
ByteSTM/RingSTM achieves the best performance for up to
32 threads. RingSTM’s performance begins to degrade after
16 threads, and with increased number of writes. This is due
to the increased false positive ratio of the Bloom filter that
increases the number of aborts. ByteSTM/TL2 achieves the
next best performance and the best in scalability. Deuce/TL2
is the third in performance, but also suffers from perfor-
mance degradation after 16 threads.

ByteSTM/TL2 outperforms non-VM/TL2 in the 13–16%
range. ByteSTM/RingSTM outperforms non-VM/RingSTM
in the 35–36% range. The gap between TL2 and RingSTM is
not large here. This is because, the number of reads is small,
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(b) 50% writes.
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(c) 80% writes.
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Figure 5. Throughput under Skip List.
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Figure 6. Throughput under Red-Black Tree.

and the number of writes is larger than that of the Linked
List.

3.2.4 Hash Set
Hash Set operations are characterized by a small number of
reads (from 2 to 31), and a medium number of writes (from
7 to 15). This results in short transactions. Moreover, the
transactions suffer from a high number of aborts (abort ratio
is from 63% to 556%) due to collisions, linked-list chains,
and duplicate inserts that update the memory. The high abort
ratio in this benchmark affects all implementations.

Figure 7 shows the results. ByteSTM/RingSTM achieves
the best performance and scalability, followed by ByteST-
M/TL2, and then Deuce. The high ratio of aborts and rel-
atively high number of writes significantly affect Deuce’s
performance. Deuce does not scale well.

ByteSTM/TL2 outperforms non-VM/TL2 in the 15–22%
range. ByteSTM/RingSTM outperforms non-VM/RingSTM
in the 25–29% range. In this experiment, the gap between
TL2 and RingSTM is not very large. This is because, the
number of reads is small and the abort ratio is high.

3.3 Macro Benchmarks
3.3.1 Bank
This benchmark simulates a subset of banking operations.
The benchmark is initialized with a set of accounts and an
initial deposit in each account. The following operations can
be done on each account: check the balance, transfer money
from one account to another, and add an interest.

We used 8 accounts. Each thread checks the balance of
all accounts, adds an interest to all the accounts, or trans-
fers money from one random account to another random one.
So, the operations are characterized by a medium number of
reads (from 26 to 42), and a medium number of writes (from
11 to 22). This results in medium-length transactions. More-
over, transactions suffer a high number of aborts (abort ratio
is from 188% to 268%), due to small number of accounts.

Figure 8 shows the results. In all cases, ByteSTM/RingSTM
achieves the best performance, followed by ByteSTM/TL2,
and then Deuce. The benchmark does not scale well for all
STMs, due to high aborts.

ByteSTM/TL2 outperforms non-VM/TL2 in the 10–12%
range. ByteSTM/RingSTM outperforms non-VM/RingSTM
in the 45–62% range.

3.3.2 Vacation
The Vacation benchmark [11] is characterized by medium-
length transactions, medium read-sets, medium write-sets,
and long transaction times (compared with other STAMP
benchmarks). We conducted two experiments: one with low
contention (a small number of operations per session, a small
ratio of create/destroy operations, and operations are per-
formed on a smaller portion of the in-memory database), and
the other with high contention.
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(c) 80% writes.
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Figure 7. Throughput under Hash Set.
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(b) 50% writes.
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Figure 8. Throughput under Bank application.
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Figure 9. Execution time under Vacation.

Figure 9 shows the results. Note that, here, the y-axis
represents the time taken to complete the experiment, and
the x-axis represents the number of threads. We observe
that ByteSTM/TL2 has the best performance and scal-
ability under both low and high contention conditions.
ByteSTM/RingSTM suffers from extremely high number of
aborts due to false positives and long transactions. ByteST-
M/TL2 outperforms non-VM/TL2 by an average of 15.7%
in low contention and 18.3% in high contention. ByteST-
M/RingSTM outperforms non-VM/RingSTM by an average
of 38.1% in low contention and 43.9% in high contention.

3.3.3 KMeans
The KMeans benchmark [11] is characterized by short trans-
action lengths, small read-sets, small write-sets, and short
transaction times. We conducted two experiments: one with
low contention, and the other with high contention.

Figure 10 shows the results. We observe that ByteSTM
with TL2 and RingSTM scales well in both cases and per-
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Figure 10. Execution time under KMeans.

forms similar. ByteSTM/TL2 outperforms non-VM/TL2
by an average of 24.8% in low contention and 29.8%
in high contention. ByteSTM/RingSTM outperforms non-
VM/RingSTM by an average of 46.8% in low contention
and 80.4% in high contention.

3.3.4 Genome
The Genome benchmark [11] is characterized by medium
transaction lengths, medium read-sets, medium write-sets,
long transaction times, and low contention. These character-
istics are similar to that of Vacation with low contention.

Figure 11 shows the results. We see that ByteSTM/TL2
and Deuce performs the same. This graph is limited to 16
threads because the benchmark does not work with higher
number of threads. Thus, the scalability of the STMs is
not clear. ByteSTM/RingSTM suffers from extremely higher
number of aborts due to false positives and long transactions,
which is similar to the behavior observed on Vacation.
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Figure 11. Execution time under Genome.
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Figure 12. Execution time under Labyrinth.

3.3.5 Labyrinth
The Labyrinth benchmark [11] is characterized by long
transaction lengths, large read-sets, large write-sets, long
transaction times, and very high contention.

Figure 12 shows the results. We observe that ByteST-
M/TL2 achieves the best performance and scalability after
16 threads. ByteSTM/RingSTM suffers from extremely high
number of aborts due to false positives and long transac-
tions, and shows no scalability. However, the high contention
nature of this benchmark (i.e., all STMs suffer from high
abort ratio) compensates for the false positive effect and re-
duces the gap between TL2 and RingSTM. ByteSTM/TL2
outperforms non-VM/TL2 by an average of 10.5%. ByteST-
M/RingSTM outperforms non-VM/RingSTM by an average
of 55%.
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Figure 13. Execution time under Intruder.

3.3.6 Intruder
The Intruder benchmark [11] is characterized by short
transaction lengths, medium read-sets, medium write-sets,
medium transaction times, and high contention.

Figure 13 shows the results. We observe that ByteST-
M/TL2 achieves the best performance. ByteSTM/RingSTM
suffers from increased aborts due to false positives. ByteST-
M/TL2 outperforms non-VM/TL2 by an average of 9%.
ByteSTM/RingSTM outperforms non-VM/RingSTM by an
average of 14.5%.

3.4 Summary
ByteSTM improves performance over non-VM implementa-
tions by an overall average of 30%. On micro-benchmarks,
ByteSTM improves by 13% to 70%. On macro-benchmarks,
ByteSTM’s improvement ranges from 10% to 60%. More-
over, the scalability is significantly better. ByteSTM, in gen-
eral, is better when the abort ratio is high and under high
contention conditions.

RingSTM performs well, irrespective of the number of
reads. However, its performance is highly sensitive to false
positives when the number of writes increases. TL2 per-
forms well when the number of reads is not large. It also per-
forms and scales well when the number of writes increases.

4. Related Work
4.1 Library-based Implementations
Deuce [25] STM is implemented as a Java library and re-
quires no changes to the JVM or the Java language. It
implements the TL2 [15] and LSA [35] algorithms, and
supports plug-ins of other STM algorithms or implemen-
tations. Deuce supports transactions implicitly (i.e., using
the @Atomic annotation), but atomic blocks are restricted
to methods. It uses instrumentation, at the bytecode level,
to generate transactional code for annotated methods, which
allows it to support external libraries. Deuce uses field-based



granularity, and uses sun.misc.Unsafe [41] non-standard
proprietary API to access memory.

JVSTM [10] is a Java STM library that uses a multi-
version STM algorithm. JVSTM works only on transac-
tional objects. External libraries are not supported. Similar
to Deuce, the @Atomic annotation is used, and offline instru-
mentation generates transactional code. JVSTM supports ex-
plicit transactions and uses object-based granularity.

ObjectFabric [33] is a cross-platform library, which con-
tains an STM implementation based on XSTM [31]. XSTM
is a multi-version STM and supports strong atomicity by al-
lowing only transactional objects inside a transaction, and
non-transactional code can only access the objects through
(small) transactions. All shared data are immutable, and mu-
table data are only available privately. This way, no synchro-
nization is required from transaction’s start to commit. Ob-
jectFabric uses explicit transactions, which only works on
transactional objects, and does not support external libraries.

AtomJava [22] supports implicit transactions through
atomic blocks by adding the atomic keyword to the Java
language. To compile the new code, a source-to-source con-
version is required (using Polyglot [32]), which can then be
compiled using standard Java compiler. (In our experimen-
tal studies in Section 3, however, the source-to-source con-
version did not work as expected.) During this conversion,
transactions are used to replace atomic blocks, and objects
are modified to support transactional access. Strong atomic-
ity is supported during the code conversion. AtomJava uses
object-based locking, and supports external libraries.

DSTM2 [21] is an object-based STM library. Transac-
tional objects are created using special factory classes. A
transactional object class is defined as a Java interface

having the @atomic annotation. A DSTM2 factory object is
created for each transactional object. When the factory ob-
ject is created, a synthetic anonymous class is created that
implements the given interface. Reflection and the bytecode
engineering library [5] are used to create the class. DSTM2
uses explicit transactions that work with only transactional
objects, and therefore does not support external libraries.

Multiverse [44] is a language-independent STM imple-
mentation that can work with any language running on a
JVM (e.g., Scala, JRuby). Thus, it does not depend on instru-
mentation and uses explicit transactions. Note that, support-
ing only JVM languages is not really language independent.
Moreover, explicit transactions are generally difficult to use
and are not programmer-transparent. Multiverse uses Gam-
maSTM [44], which is an optimized version of TL2 [15].

LSA-STM [34, 36] is an STM library that uses the LSA
algorithm [35], which is a multi-version obstruction-free
STM. It uses online instrumentation to generate transac-
tional code using the ASM library [7]. Instrumentation re-
lies on annotations. Transactional objects are marked with
@Transactional, and atomic methods are marked with

@Atomic. Transactions can only access transactional ob-
jects, and therefore does not support external libraries.

4.2 VM-level Implementations
Harris and Fraser modified the Sun JVM for Research (writ-
ten in C) to support TM operations [18]. It supports atomic
blocks using the new atomic keyword, and a modified com-
piler is used to compile the blocks into bytecode. To simplify
the conversion, only methods can be atomic. Atomic meth-
ods are recognized by the VM by adding a suffix to their
names during compilation, which allows supporting trans-
actions without adding new bytecode. This C-based STM is
implemented in the JVM to obtain benefits from its managed
environment. The algorithm used allows inconsistent reads
to occur, which can cause unrecoverable errors. For exam-
ple, an inconsistent read can cause a loop to write outside
the bounds of an array. In an unmanaged environment, the
memory will be overwritten.

Atomos [12] presents a new programming language that
is based on Java. It replaces Java monitors with transactions.
The keyword synchronized is replaced with atomic,
and the wait/notify conditional variable is replaced with
watch/retry. Removing Java’s standard synchronization
mechanisms means that there is no backward compatibility
for legacy code. Also, there are situations where some trans-
actions may require different handling, such as irrevocable
transactions. Atomos is implemented inside the JVM. It sup-
ports implicit transactions, strong atomicity (using an HTM
that supports it), and open nesting. The JikesRVM [4] and
the TCC HTM [28] are used in Atomos implementation.

Transactional monitors are added to Java in [45]. It is im-
plemented in JikesRVM [4]. Standard Java synchronization
is not removed, but it cannot be used with transactional mon-
itors. The monitors are implemented as implicit transactions,
and uses exceptions handling for transaction re-execution.
The bytecode engineering library [5] is used to inject ex-
ception handling code that restores program state and restart
transactions. The monitors use write and read barriers, which
are functions called by JikesRVM with every read or write.

Adl-Tabatabai et. al. [1] optimize STM operations by us-
ing a JIT compiler in the ORP [13] managed environment
with a new language extension. The StartJIT Java com-
piler [2], which is part of the VM, is modified to optimize
STM calls, which are handled by McRT-STM [37]. The
source code is first compiled by Polyglot [32] to handle the
new language extensions. The JIT compiler then optimizes
the STM calls that use McRT-STM.

In contrast to these STMs, ByteSTM works with all data
types, not just transactional objects. It supports external li-
braries, does not use instrumentation, and uses field-based
granularity. ByteSTM directly accesses memory without us-
ing non-standard libraries, supports atomic blocks anywhere
in the code, and its metadata bypasses the GC. It supports
implicit transactions, works with or without compiler sup-



port, works at the VM-level, provides opacity, and is imple-
mented entirely in software.

However, ByteSTM (currently) has no multi-version
STM algorithm implementation, and does not support strong
atomicity, nesting, or conditional variables. Also, ByteSTM
(currently) does not support plug-ins. Besides the directions
in Section 2.7, these are also planned as future work.

As previously described, Table 1 summarizes our com-
parison of ByteSTM with competitor STM implementations.

5. Conclusions
At its core, our work shows that implementing an STM at the
VM-level is indeed possible, and can yield significant per-
formance benefits. This is because, at the VM-level, STM
overhead is significantly reduced. Additionally, memory op-
erations are faster, the GC overhead is eliminated, no in-
strumentation is required (i.e., the same code can run in
two modes: transactional and non-transactional). Moreover,
atomic blocks can be supported anywhere, and metadata is
attached to the thread header. Since the VM has full control
over all transactional and non-transactional memory opera-
tions, features such as strong atomicity and support for irre-
vocable operations (which are not currently supported) can
be efficiently supported.

These optimizations are not possible at a library-level.
Moreover, compiler-level STM for VM languages cannot
support these optimizations also. Thus, implementing an
STM for a managed language at the VM-level is likely the
most performant.

ByteSTM is publicly available at hydravm.org/bytestm.
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