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ABSTRACT
We present a virtual machine prototype, called HydraVM,
that automatically extracts parallelism from legacy sequen-
tial code (at the bytecode level) through a set of techniques
including code profiling, data dependency analysis, and ex-
ecution analysis. HydraVM is built by extending the Jikes
RVM and modifying its baseline compiler, and exploits soft-
ware transactional memory to manage concurrent and out-
of-order memory accesses. We describe HydraVM’s archi-
tecture and implementation, and report on experimental
studies using the JOlden benchmark, which shows up to 5×
speed up.

Categories and Subject Descriptors
D.1.3 [Software]: Concurrent Programming; H.2.4 [Systems]:
Transaction processing

General Terms
Design, Performance, Parallel Programming

Keywords
Software Transactional Memory (STM), Legacy Systems,
Automatic Parallelization

1. INTRODUCTION
Many organizations with enterprise-class legacy software are
increasingly faced with a hardware technology refresh chal-
lenge due to the ubiquity of chip multiprocessor (CMP)
hardware. This problem is significant when legacy code-
bases run into several million LOC and are not significantly
concurrent (often intentionally designed to be sequential to
reduce development costs, while exploiting Moore’s law of
single-core chips). Manual exposition of concurrency is largely
non-scalable, due to the significant difficulty in exposing con-
currency and ensuring correctness of the converted code.
Additionally, in some instances, sources are not available
due to proprietary reasons, intellectual property issues (of

integrated third-party software), and organizational bound-
aries. This motivates the need for automated concurrency
refactoring techniques and tools.

Past efforts on parallelizing sequential programs can be broadly
classified into speculative and non-speculative techniques.
Non-speculative techniques, which are usually compiler-based,
exploit loop-level parallelism, and differ on the type of data
dependency that they handle (e.g., static arrays, dynami-
cally allocated arrays, pointers) [8, 23, 37, 19].

Speculative techniques can be broadly classified based on 1)
what program constructs they use to extract threads (e.g.,
loops, subroutines, traces, branch targets), 2) whether they
are implemented in hardware or software, 3) whether they
require source codes, and 4) whether they are done online,
offline, or both. Of course, this classification is not mutually
exclusive.

Parallelization using thread-level speculation (TLS) hard-
ware has been extensively studied, most of which largely
focus on loops [36, 42, 22, 30, 41, 15, 16, 34, 43]. Automatic
and semi-automatic parallelization without TLS hardware
have also been explored [28, 37, 19, 17, 14].

Transactional memory (TM) has recently emerged as a pow-
erful concurrency control abstraction [29]. With TM, code
that read/write shared memory objects is organized as trans-
actions, which speculatively execute, while logging changes
made to objects–e.g., using an undo-log or a write-buffer.
When two transactions conflict (e.g., read/write, write/write),
one of them is aborted and the other is committed, yield-
ing (the illusion of) atomicity. Aborted transactions are
re-started, after rolling-back the changes–e.g., undoing ob-
ject changes using the undo-log (eager), or discarding the
write buffers (lazy). Besides a simple programming model,
TM provides performance comparable to lock-based syn-
chronization [38] and is composable. Multiprocessor TM
has been proposed in hardware (HTM), in software (STM),
and in hardware/software combination.

Motivated by TM’s advantages, several recent efforts have
exploited TM for automatic parallelization. In particular,
trace-based automatic/semi-automatic parallelization is ex-
plored in [10, 11, 13, 20], which use HTM to handle de-
pendencies. [35] parallelizes loops with dependencies using
thread pipelines, wherein multiple parallel thread pipelines
run concurrently. [32] parallelizes loops by running them as



1 for ( i =0; i<k ; i++){
2 . . . SUPERBLOCK As
3 }
4 i f ( i >50){
5 for ( j =0; j <100; j++){
6 . . . SUPERBLOCK Bs
7 }
8 }

Figure 1: Superblock example.

transactions, with STM preserving the program order. [40]
parallelizes loops by running a non-speculative“lead”thread,
while other threads run other iterations speculatively, with
STM managing dependencies.

In this paper, we exploit STM for automated concurrency
refactoring. Our basic idea is to optimistically split code (at
the bytecode level) into parallel semi-independent sections,
called superblocks [25]. For each superblock, we create a syn-
thetic method that contains the code for the superblock and
receives variables accessed by the superblock as parameters,
and returns the exit point of the superblock. This synthetic
method is executed in a separate thread, and is run as a
memory transaction, while relying on STM to detect and
resolve memory conflicts (between the superblocks).

Thus, each transaction has its own memory that it accesses
or modifies. When the transaction is invoked, a copy of all
variables is made and is sent to the method. Upon success-
ful completion of the transaction, this copy is then merged
back with the master memory version. In short, our memory
model is lazy-commit with write-buffer implementation. To
distinguish between multiple copies of an object, an identi-
fier is added to the header of an object, which is unique in all
copies of the object. We define a successful execution of an
invoked superblock as when 1) it does not cause a memory
conflict with another superblock with an older chronological
order, and 2) it is reachable in a future execution of the pro-
gram. The approach thus guarantees safe access to shared
memory.

We build these techniques into a virtual machine (VM) called,
HydraVM, by extending the Jikes RVM [3] and modifying
its baseline compiler.

Figure 1 shows a simple example of executing superblocks.
Assume that the two loops were detected as candidate su-
perblocks. HydraVM will package every 10 iterations of
the first loop as superblocks A1, A2, . . ., An, and similarly
for the second loop as superblocks B1, . . ., Bm. These su-
perblocks will then be executed in parallel on different cores.
However, some of the superblocks may conflict (e.g., due to
variable dependencies between iterations), or may not be
reachable (e.g., due to control flow statements). Thus, we
abort and retry conflicting blocks, and abort non-reachable
ones.

This approach is different than loop parallelization [9], be-
cause a superblock can span loops and method calls (see
section 3.4). The main concern in constructing a superblock
is in determining the portion of memory that it may access,

and the number of instructions that it may contain.

As mentioned before, we need an STM implementation to
handle potential memory conflicts. We thus develop ByteSTM
(Section 3.5), which is an STM implementation at the virtual
machine-level, which yields the following benefits: 1) Signif-
icant implementation flexibility in handling memory access
at low-level (e.g., registers, thread stack) and for transpar-
ently manipulating bytecode instructions for transactional
synchronization and recovery; 2) Higher performance due to
implementing all TM building blocks (e.g., versioning, con-
flict detection, contention management) at bytecode-level;
and 3) Easy integration with other modules of HydraVM.

In contrast to other STM implementations, in ByteSTM,
at commit time, a transaction scans the thread stack and
registers and collects the addresses of the accessed objects.
Objects identifiers are retrieved from the object copies and
used to create a transaction signature, which represents the
memory addresses accessed by the transaction. Transac-
tional conflicts are detected using the intersection of trans-
action signatures.

To preserve the program order, each transaction must wait
until its preceding code in the original program has been
executed to commit. Toward this, ByteSTM suspends com-
pleted transactions till their valid commit times are reached.
Aborted transactions discard their changes and are either
terminated (i.e., a program flow violation or a misprediction)
or re-executed (i.e., to resolve a data-dependency conflict).

We experimentally evaluated HydraVM on a set of bench-
mark applications, including a subset of the JOlden bench-
mark suite [12]. Our results reveal speedup of up to 5×.

Our work is different from past STM-based parallelization
works in that we consider entire programs (not just loops
such as [32, 40]), and automatically identify parallel sections
(i.e., superblocks) by compile and run-time program analysis
techniques, which are then executed as transactions. Addi-
tionally, our work targets arbitrary programs (not just re-
cursive such as [11]), is entirely software-based (unlike [11]),
and do not require program source code.

HydraVM is publicly available at www.hydravm.org.

The rest of the paper is organized as follows. In Section 2, we
describe HydraVM’s design and underlying mechanisms. We
report on our experimental studies in Section 4. In Section 5,
we overview past and related efforts and contrast them with
HydraVM. We conclude in Section 6.

2. OVERVIEW
Adaptive Optimization System (AOS) [3] is a general virtual
machine architecture that allows online feedback-directed
optimizations. In HydraVM, we extend the AOS architec-
ture to enable parallelization of input programs, and dynam-
ically refine parallelized sections based on execution. Fig-
ure 2 shows the architecture of HydraVM which contains
six components:

• Profiler: performs static analysis and adds additional
instructions to monitor data access and execution flow
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Figure 2: HydraVM Architecture

at run-time.
• Inspector: monitors program execution at run-time

and produces profiling data.
• Recompilation: recompiles bytecode into machine code

and reloads classes definitions at run-time.
• Knowledge Repository: a store for profiling data.
• Builder: uses profiling data to reconstruct the program

as multi-threaded code, and tunes execution according
to data access conflicts.
• TM Manager: does transactional concurrency control

to guarantee safe memory and preserves program exe-
cution order.

HydraVM works in three phases. The first three phases fo-
cus on detecting parallel patterns in the code, by injecting
the code with hooks, monitoring code execution, and deter-
mining memory access and execution patterns. This may
lead to slower code execution due to inspection overhead.
Profiler is active only during this phase. It analyzes the
bytecode and instruments it with additional instructions.
Inspector collects information from generated instructions
and stores it in the Knowledge Repository.

The second phase starts after collecting enough information
in the Knowledge Repository about which blocks were ex-
ecuted and how they access memory. The Builder compo-
nent uses this information to split the code into superblocks,
which can be executed in parallel. New version of the code is
generated and is compiled by the Recompilation component.
The TM Manager manages memory access of the execution
of the parallel version, and organizes transaction commit
according to the original execution order. The manager col-
lects profiling data including commit rate and conflicting
threads.

The last phase is tuning the reconstructed program based
on thread behavior (i.e., conflict rate). The Builder evalu-
ates the previous reconstruction of superblocks by splitting
or merging some of them, and reassigning them to threads.
The last two phases work in an alternative way till the end
of program execution, as the second phase represents a feed-

1 for ( In t e g e r i = 0 ; i < DIMx; i++) {
2 for ( In t e g e r j = 0 ; j < DIMx; j++) {
3 for ( In t e g e r k = 0 ; k < DIMy; k++) {
4 X[ i ] [ j ] += A[ i ] [ k ] ∗ B[ k ] [ j ] ;
5 }
6 }
7 }

Figure 3: Matrix Multiplication Example

back to the third one.

HydraVM supports two modes; online and offline. In the
online mode, we assume that program execution is long
enough to capture parallel execution patterns, Otherwise,
the first phase can be done in a separate pre-execution phase,
which can be classified as offline mode.

In the next subsections, we describe each of HydraVM’s
components.

2.1 Bytecode Profiling
First, HydraVM accepts program bytecode and converts it
to architecture-specific machine code. We consider the pro-
gram as a set of basic blocks, where each basic block is a se-
quence of non-branching instructions that ends either with
a branch instruction (conditional or non-conditional) or a
return. Thus, any program can be represented by a graph
in which nodes represent basic blocks and edges represent
the program control flow – i.e., an execution graph (see Fig-
ure 4). Basic blocks can be determined at compile-time.
However, our main goal is to determine the context and
frequency of reachability of the basic blocks – i.e., when
the code is revisited through execution. To collect this in-
formation, we modify Jikes RVM’s baseline compiler to in-
sert additional instructions (in the program bytecode) at the
edges of the basic blocks (e.g., branching, conditional, return
statements) that detect whenever a basic block is reached.
Additionally, we insert instructions into the bytecode to 1)
statically detect the set of variables accessed by the basic
blocks, and 2) mark basic blocks with input/output opera-
tions, as they need special handling in program reconstruc-
tion. This code modification doesn’t affect the behavior of
the original program. We call this version of the modified
program, profiled bytecode.

2.2 Superblock detection
With the profiled bytecode, we can view the program execu-
tion as a graph with basic blocks and variables represented as
nodes, and the execution flow as edges. A basic block that is
visited more than once during execution will be represented
by a different node each time. The benefits of execution
graph are multifold: 1) Hot-spot portions of the code can
be identified by examining the hot paths of the graph, 2)
static data dependencies between blocks can be determined,
and 3) parallel execution patterns of the program can be
identified.

To determine superblocks, we use a string factorization tech-
nique: we represent each basic block by a character that acts
like an unique identifier for that block. Now, an execution



of a program can be represented as a string. For example,
Figure 3 shows a matrix multiplication code snippet. An
execution of this code for a 2x2 matrix can be represented
as the string abjbhcfefghcfefghijbhcfefghcfefghijk. We
factorize this string into its basic components or “factors”,
using a variant of Main’s string factorization algorithm [31],
which is described in Algorithm 1.

Algorithm 1 Factorize(String x)

1: Compute the s-factorization x= u1 . . . uk of the input
string x.

2: for all h in 2 .. k do
3: L = 2*|uh-1|+|uh|
4: th = substring of x with length L and which immedi-

ately precedes uh.
5: end for
6: S = new(Stack)
7: for all h in 2 .. k do
8: S.push(all maximal periodicities in thuh, which start

in th and end in uh).
9: end for

10: periodicities = new(List)
11: while !S.isEmpty() do
12: m = S.pop()
13: mperiodicities = Factorize(m)
14: if mperiodicities.isEmpty() then
15: periodicities.push(m) {minimal periodicity}
16: else
17: periodicities.push(mperiodicities)
18: end if
19: end while
20: return periodicities

Periodicities are non empty strings of the form pmq, where
m ≥ 2. In Algorithm 1, we start by finding the periodicities
with the maximal length (lines 1-9). We then reapply the
same method recursively to find the minimal ones (lines 10-
20).

This factorization converts the matrix multiplication string
into ab(jb(hcfefg)2hi)2jk. Using this representation, com-
bined with grouping blocks that access the same memory
locations, we divide the code into a set of nested calls, where
each call execute a group of basic blocks, which becomes a
superblock.

Thus, we divide the code, optimistically, into independent
parts called superblocks that represent subsets of the exe-
cution graph. Each superblock doesn’t overlap with other
superblocks in accessed variables, and represents a long se-
quence of instructions, including branch statements, that
commonly execute in this pattern. Since a branch instruc-
tion has taken and not taken paths, the superblock may con-
tain one or both of the two paths according to the frequency
of using those paths. For example, in biased branches, one
of the paths is often considered; so it is included in the
superblock, leaving the other path outside the superblock.
On the other hand, in unbiased branches, both paths may
be included in the superblock. Therefore, a superblock has
multiple exits, according to the program control flow dur-
ing its execution. A superblock also has multiple entries,
since a jump or a branch instruction may target one of the
basic blocks that constructs it. The parallelizer module or-
chestrates the construction of superblocks and distributes
them over parallel threads. However, this may potentially
lead to out-of-order execution of the code, which we address
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Figure 4: Matrix Multiplication Execution Graph
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Figure 5: Program Reconstruction as a Producer-
Consumer pattern

through STM concurrency control (see Section 2.4). I/O in-
structions are excluded from superblocks, as changing their
execution order affects the program semantics.

2.3 Code Reconstruction
Upon detection of candidate superblocks for parallelization,
the program is reconstructed as a producer-consumer pat-
tern. In this pattern, two daemons threads are active, pro-
ducer and consumer, which share a common fixed-size queue
of tasks. The producer generates jobs and adds them in the
queue, while the consumer dequeues the jobs and executes
them. HydraVM uses a Collector module and an Executor
module to process the superblocks: the Collector has access
to the generated superblocks and uses them as jobs, while
the Executor executes the superblocks by assigning them to
a pool of core threads.

Figure 5 shows the overall pattern of the generated program.
Under this pattern, we utilize the available cores by execut-
ing the superblocks in parallel. However, doing so requires
handling of several issues such as:

• Threads may finish in out of original execution order.
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Figure 6: Parallel execution pitfalls: (a) normal se-
quential execution, (b) possible parallel execution
scenario, and (c) transactional memory execution.

• The execution flow may change at run-time causing
some of the assigned superblocks to be skipped from
the correct execution.
• Due to the differences between execution flow in the

profiling phase and the actual execution, memory ac-
cess conflicts between concurrent accesses may occur.
Also, memory arithmetic (e.g., arrays indexed with
variables) may easily violate the program reconstruc-
tion (see example in Section 3.2).

To tackle these problems, we execute each thread as a trans-
action. A transaction’s changes are deferred until commit.
At commit time, a transaction commits its changes if and
only if: 1) it did not conflict with any other concurrent trans-
action, and 2) it is reachable under the execution.

2.4 TM Managed Parallelization
We now describe how to preserve data consistency and pro-
gram order. To ensure data consistency, we use STM. Mem-
ory access violations are detected and resolved by STM through
transactional conflict detection, abort, roll-back, and retry.
Program order is maintained by deferring the commit of
transactions that complete early till their valid execution
time.

Consider the example in Figure 6, where three superblocks
A, B, and C are assigned to different threads TA, TB , and
TC and execute as three transactions tA, tB , and tC , re-
spectively. Superblock A can have B or C as its successor,
and that cannot be determined until run-time. According to
the parallel execution shown in Figure 6(b), thread TC will
finish execution before others. However tC will not commit
until tA or tB completes successfully. This requires that ev-
ery transaction must notify the STM to permit its successor
to commit.

Now, let tA conflict with tB because of unexpected memory
access. STM will favor the older transaction in the original
execution and abort tB , and will discard its local changes.
Later, tB will be re-executed. A problem arises if tA and
tC wrongly and unexpectedly access the same memory loca-
tion. Under the parallel execution scenario in Figure 6(b),
this will not be detected as a transactional conflict (TC fin-
ishes before TA). To handle this scenario, we extend the
life time of transactions to the earliest transaction starting

1 y = 1
2 y += 2
3 x = y

1 y1 = 1
2 y2 = y1 + 2
3 x1 = y2

Figure 7: Static Single Assignment form Example

time. When a transaction must wait for its predecessor to
commit, its life time is extended till the end of its predeces-
sor. Figure 6(c) shows the execution from the transactional
memory perspective.

2.5 Reconstruction Tuning
Transactional memory preserves data consistency. However,
it may cause degraded performance due to successive con-
flicts. To reduce this, the TM Manager provides feedback
to the Builder component to reduce the number of con-
flicts. We store the commit rate, and the conflicting sce-
narios in the Knowledge Repository to be used later for fur-
ther reconstruction. When the commit rate reaches a min-
imum preconfigured rate, the Builder is invoked. Conflict-
ing superblocks are merged together as a single superblock
with the required changes to the control instructions (e.g.,
branching conditions) to maintain the original execution flow.
The newly reconstructed version is recompiled and loaded as
a new class definition at run-time.

3. IMPLEMENTATION
3.1 Detecting Real Memory Dependencies
Recall that we use bytecode as the input, and concurrency
refactoring is done entirely at the VM level. Compiler opti-
mizations such as register reductions and variable substitu-
tions increase the difficulty in detecting memory dependen-
cies at the bytecode-level. For example, two independent
basic blocks in the source code may share the same set of lo-
cal variables or loop counters in the bytecode. To overcome
this problem, we transform the bytecode into the Static Sin-
gle Assignment form (SSA) [6]. The SSA form guarantees
that each local variable has a single static point of defini-
tion, which significantly simplifies analysis. Figure 7 shows
an example of the SSA form.

Using the SSA form, we inspect assignment statements, which
reflect memory operations required by the basic block. At
the end of each basic block, we generate a call for a touch
operation that notifies the VM about the variables that were
accessed in that basic block. In the second phase of profil-
ing, we record the execution paths and the memory accessed
during those paths. We then package each set of basic blocks
in a superblock. Superblocks should not be conflicting and
access the same memory objects. However, it is possible to
have such conflicts, since our analysis uses information from
past execution.

We intentionally designed the data dependency algorithm
to ignore some questionable data dependencies (e.g., loop
index). This gives more opportunities for parallelization,
since if at run time, if a questionable dependency occurs,



the STM will detect and handle it. Otherwise, such blocks
will run in parallel and greater speedup is achieved.

3.2 Misprofiling
We rely on our analysis on online profiling for detecting exe-
cution flow, which mainly depends on the input in the profil-
ing phase. This input may not reflect some run-time aspects
of the program flow (e.g., loops limits, biased branches). To
illustrate this, we return to the matrix multiplication ex-
ample in Figure 3. Based on the profiling using 2x2 matri-
ces, we construct the execution graph shown in Figure 4.
Now, assume that we have the following superblocks ab,
jbhi, hcfefg and jk, and we need to run this code for ma-
trices 2x3 and 3x2. The Collector will assign jobs to the
Executor, but upon the execution of the superblock jk, the
Executor will find that the code exits after j and needs to
execute bhi. Hence, it will request the Collector to schedule
the job jbhi in the incoming job set. Doing so allows us to
extend the flow to cover more iterations. Note that the entry
point must be send to the synthetic method that represents
the superblock, as it should be able to start from any of its
basic blocks (e.g., jbhi will start from b not j, as j already
executed before).

3.3 Handing Irrevocable Code
Input and output instructions must be handled as a special
case in the reconstruction and parallel execution as they are
irrevocable – i.e., they cannot be rolled back. Superblocks
with I/O instructions are therefore marked for special han-
dling. The Collector never schedules such marked superblocks
unless they are reachable – i.e., they cannot be run in parallel
with their preceding superblocks. However, they can be run
in parallel with their successor superblocks. This implicitly
ensures that at most one I/O superblock executes.

3.4 Method Inlining
Method inlining is the insertion of the complete body of a
method at every place that it is called. In HydraVM, method
calls appear as basic blocks, and in the execution graph, they
appear as nodes. Thus, inlining occurs automatically as a
side effect of the reconstruction process. This has significant
impact on performance, as it eliminates the time overhead
of invoking a method.

Another interesting issue is handling recursive calls. The
execution graph for recursion will appear as a repeated se-
quence of basic blocks (e.g., abababab . . . ). Similar to method-
inlining, we merge multiple levels of recursion into a single
superblock, which reduces the overhead of managing param-
eters over the heap. Thus, a recursive call under HydraVM
will be formed as nested transactions with lower depth than
the original recursive code.

3.5 ByteSTM
ByteSTM is an STM that operates at the bytecode level
and is integrated into the VM. We modified the Jikes RVM
to support TM by adding new instructions, xBegin and
xCommit. xBegin is used to start a transaction, while
xCommit is used to end the transaction.

Each load and store inside a transaction is done transac-
tionally – i.e., loads are recorded in a read signature and

stores are sand-boxed. In more detail, each store is not
written to the original variable, but instead, it is stored in
a transaction-local storage, called the write set. Since we
are working at the low level of the VM, the address of any
variable can be accessed. Thus, we add the address to the
write signature. The read/write signature is represented us-
ing a Bloom filter [7]. Using a signature to detect read/write
or write/write conflicts between transactions is significantly
less expensive than comparing the read set and write set of
transactions, but it also increases false negatives.1

When a load is called inside a transaction, we first check the
write set to determine if this location has been written to
before and if so, the value from the write set is returned.
Otherwise, the value is read from the memory and the ad-
dress signature is added to the read signature. At commit
time, the read signature and write signature of concurrent
transactions are compared, and if there is a conflict, the
newer transaction is aborted and restarted again. If the
validation shows no conflict, then the write set is written
to memory and the changes become visible to the outside
world.

For a VM-level STM, greater optimizations are possible than
that for non VM-level STMs (e.g., Deuce [27], DSTM2 [24]).
At this low level, data types do not matter. All we care
about is the size of a data type, which allows us to sim-
ply the data structures used to handle transactions. One
through eight-byte data types are handled in the same way.
In the same manner, all different data addressing is reduced
to absolute addressing. Primitives, objects, array elements,
and statics are handled differently inside the VM, but they
are translated into an absolute address and a specific size in
bytes. This simplifies and speeds-up the write-back process,
since we only care about writing back some bytes at a spe-
cific address. This allows us to work at the field level and at
the array element level, which significantly reduces transac-
tional conflicts: if two transactions use the same object, but
each use a different field inside the object, then no conflict
occurs (similarly for arrays).

Another optimization is the ability to avoid the VM’s garbage
collector (GC). GC can reduce STM performance when at-
tempting to free unused objects. Also, dynamically allocat-
ing new memory to be used by STM is costly. Working at
the VM level allows us to disable the GC for the memory
used for the internal data structures that support STM. In
ByteSTM, we statically allocate memory for STM, handle
it without interruption from the GC, and manually recycle
it. New memory is allocated if there is a memory overflow.
Note that if a hybrid TM is implemented in Java, then it
must be implemented inside the VM. Otherwise, hybrid TM
will violate invariants of internal data structures used inside
the VM, leading to inconsistencies.

We also inline the STM code inside the load and store in-
structions and the newly added instructions xBegin and
xCommit. Thus, there is no overhead in calling the STM
procedures in ByteSTM.

When used to preserve the data consistency between su-

1With the correct signature size, the effect of false positives
can be reduced – we do this.



perblocks, STM must be modified to support ordering of
the superblocks. Each superblock has an order that rep-
resents its logical order in the sequential execution of the
original program. This order must be maintained. Thus,
in ByteSTM, when a conflict is detected between two su-
perblocks, we abort the one with the higher order. Also,
when a block with a higher order tries to commit, we force
it to sleep until its order is reached (in time). ByteSTM
then allows it to commit if no conflict is detected.

When attempting to commit, each transaction checks its or-
der against the expected order. If they are the same, the
transaction proceeds and updates the expected order. Oth-
erwise, it sleeps and waits for its turn. After committing,
each thread checks if the next thread is waiting for its turn
to commit, and if so, that thread is woken up.

Thus, ByteSTM keeps track of the expected order and han-
dles commit in a decentralized manner.

3.6 Parallelizing Nested Loops
Nested loops are generally difficult for a parallelization en-
gine, as it is difficult to parallelize both inner and outer loops
at run-time. In HydraVM, we handle nested loops as nested
transactions using the closed-nesting model [33], which is
summarized using the following rules:

• Inner transactions share the readset/writeset of their
parent transactions.
• Inner transactions may conflict with each other and

also with other, non-parent, higher-level transactions.
• Aborting a parent transaction aborts all its inner trans-

actions.
• Changes made by inner transactions become visible to

their parent transactions when the inner transactions
commit, but they are hidden from the outside world
till the commit of the highest level parent.

Consider our earlier matrix multiplication example. We
have an outer transaction jbhi, which invokes a set of inner
transactions hcfefg after the execution of the basic block b.

4. EXPERIMENTAL EVALUATION
Benchmarks. To evaluate HydraVM, we used five appli-
cations as benchmarks. These include a matrix multipli-
cation application and four applications from the JOlden
benchmark suite [12]: minimum spanning tree (MST), tree
add (TreeAdd), traveling salesman (TSP), and bitonic sort
(BiSort). The applications are written as sequential appli-
cations, though they exhibit data-level parallelism.

Testbed. We conducted our experiments on a multicore
machine with 8 cores, each of which is an 800 MHz AMD
Opteron Processor, with 64 KB L1 data cache, 512 KB L2
data cache, and 5 MB L3 data cache, and running Ubuntu
Linux.

Evaluation. Table 1 shows the result of the Profiler analy-
sis on the benchmarks. The table shows the number of basic
blocks, superblocks, and the average number of instructions
per basic block. The lower part of the table shows the num-
ber of executed jobs by the Executor, and the maximum
level of nesting during the experiments.

Table 1: Benchmark breakdown
Benchmark Matrix TSP BiSort MST TreeAdd

Instr per BB 4.29 4.2 4.75 3.7 4.1
Basic Blocks 31 77 24 52 10
Superblocks 3 12 5 3 4
Jobs 1001 1365 1023 12241 8195
Max Nesting 2 5 2 1 3
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Figure 8: HydraVM Speedup

Using our techniques, we manage to split the sequential im-
plementation of the benchmarks into parallel jobs that ex-
ploit data-level parallelism. Figure 8 shows the speedup ob-
tained for different number of processors. For matrix mul-
tiplication, HydraVM reconstructs the outer two loops into
nested transactions, while the inner-most loop is formed into
a superblock because of the iteration dependencies. In TSP,
BiSort and TreeAdd, each multiple level of recursive call
is inlined into a single superblock. For the MST bench-
mark, each iteration over the graph adds a new node to the
MST, which creates inter-dependencies between iterations.
However, updating the costs from the constructed MST and
other nodes presents a good parallelization opportunity for
our engine.

5. PAST AND RELATED WORK
Past efforts on parallelizing sequential programs can be broadly
classified into speculative and non-speculative techniques.
Non-speculative techniques are usually compiler-based. Most
works in this category exploit loop-level parallelism. Differ-
ent techniques differ on the type of data dependency that
they handle (e.g., static arrays, dynamically allocated ar-
rays, pointers, etc.). For example, in [8, 23], the compiler
finds loops with no cross-iteration dependencies and exe-
cutes each iteration in a thread. A simple data analysis of
arrays and scalars is used to determine such loops. Privatiza-
tion is applied to arrays to eliminate some data dependency.
In [37], recursive divide and conquer algorithms are split to
execute in multiple threads. Data dependency in dynami-
cally allocated arrays are also analyzed. In [19], data depen-
dency between pointer aliases are analyzed. [18] presents a
parallel compiler, editor, and debugger. The editor analyzes



a program and suggests possible transformations to increase
parallelism to the programmer. [1] presents four optimiza-
tion techniques to parallelize code. [39] presents a parallel
translator system that converts sequential Fortran code into
a parallel one.

Without speculation, the extracted threads must have no de-
pendencies, which is generally difficult through static anal-
ysis alone at compile time. Some recent research in non-
speculative parallelization delay data dependency analysis
to run-time. The idea is to collect some information at com-
pile time and use it to detect data dependencies at run-time
(e.g., [14]).

Speculative techniques can be broadly classified based on
factors including 1) the program constructs that are used
to extract threads (e.g., loops, subroutines, traces, branch
targets, etc.), 2) whether the technique is implemented in
hardware, software, or depends on thread-level speculation
(TLS) hardware, 3) whether the source code is required or
not, and 4) whether the technique is online, offline, or both.
Of course, this classification is not mutually exclusive.

Parallelization using TLS hardware has been extensively
studied. Again, most such efforts focus on loop paralleliza-
tion. In [36], DOALL loops without proven dependencies are
parallelized using TLS hardware. Loops with dependencies
are parallelized using thread pipelining and a new hardware
design in [42]. [22] parallelizes loops based on a cost-driven
data analysis and running them on TLS hardware. [30] par-
allelizes loops and subroutines on TLS hardware. [2] uses
immediate post-dominators of conditional branches to par-
allelize on TLS hardware. [41] is based on loading data early
using thread-level data speculation. Also, a new hardware
addition is used. [15] uses a hardware tracer to dynamically
extract speculative thread loops from a sequential program.
The extracted threads run on TLS hardware.

[16, 34, 43, 22] analyze loop data dependencies at com-
pile time and parallelize using TLS hardware. [41] paral-
lelizes code using program profilers and TLS hardware. [15]
presents TLS hardware to speculatively parallelize sequen-
tial programs. [30] uses heuristics to exploit parallelism from
loops, subroutines, and continuations, and uses TLS hard-
ware. Automatic loop parallelization using TLS hardware is
also explored in [26].

Automatic and semi-automatic parallelization without TLS
hardware have also been studied. [28] manually annotates
concurrent and synchronized code blocks in C programs and
then uses those annotations for run-time parallelization. [37]
does compile-time analysis to exploit parallelism in array-
based, divide-and-conquer programs. [19] analyzes symbolic
access paths for interprocedural may-alias analysis, toward
exploiting parallelism. [17] presents escape analysis for Java
programs for determining object lifetimes toward enhancing
concurrency. Automatic parallelization of pointer-based, re-
cursive Java programs is presented in [14], where method
dependencies are statically analyzed and used at run-time
for parallel execution.

Trace-based automatic/semi-automatic parallelization is stud-
ied in [10, 11, 13, 20]. (Traces were invented in [4, 5] as part

of HP’s Dynamo optimizer, which optimizes native program
binary at run-time using a trace cache.) [13] and [20] man-
ually parallelize Java programs and use HTM to handle de-
pendencies. A Trace Collection System is developed in [10,
11]. This work uses traces for parallelization of recursive
programs with data-level parallelism, and HTM is used to
handle dependencies.

[35] parallelizes loops with dependencies using thread pipelines,
wherein multiple parallel thread pipelines run concurrently. [32]
presents an all software technique to parallelize loops. The
work uses a specially designed STM, called STMLite, to han-
dle conflicts between threads and for ordering committing
transactions. [40] proposes an all software technique to par-
allelize loops. A “lead” thread works non-speculatively and
other threads run other iterations speculatively. STM is
used to manage dependencies.

Our work is different from all these works in that, we propose
STM-based parallelization, which is 1) entirely software-
based, 2) is program source-independent, and 3) adaptive at
run-time according to execution changes. Perhaps, the clos-
est to our proposed work is [11]. Our work differs from [11]
in the following ways. First, we propose STM for concur-
rency control, which doesn’t need any hardware transac-
tional support. Second, [11] is restricted to recursive pro-
grams, whereas we allow arbitrary programs. Third, [11]
does not automatically infer transactions; rather, entire work
performed in tasks (of traces) is packaged as transactions.
In contrast, we identify superblocks by compile and run-
time program analysis techniques, which are then executed
as transactions.

Similar to our work, [32] uses STM for handling thread
conflicts and uses a Transaction Commit Manager (TCM)
to preserve program order. However, the work focuses on
parallelizing loops; not an entire program. [21] introduces
Behavior Oriented Parallelization (BOP), which parallelizes
programs through profiling and uses the concept of Possi-
bly Parallel Regions, which are code segments manually an-
notated for parallelization. In contrast, HydraVM is fully
automated.

6. CONCLUSIONS
We presented HydraVM, a JVM that automatically refac-
tors concurrency in Java programs at the bytecode-level.
Our basic idea is to reconstruct the code in a way that ex-
hibits data-level and execution-flow parallelism. STM was
exploited as memory guards that preserve consistency and
program order. Our experiments show that HydraVM achieves
speedup between 2×-5× on a set of benchmark applications.
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